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Abstract—The problem analyzed in this paper is a specific application of the composite membrane. General diffusion
and convection formulation is presented for the dynamic problem. The spectral analysis considers convective transport
of a single solute species across a one dimensional membrane system. The solution is obtained using operator theoretic
methods. The geometrical structure of the spectrum of the operator is determined for the complete range of the
various parameters including the distribution coefficient, the convective velocity and the diffusion coefficient. The
structure of the spectrum allows a complete characterization of all the eigenvalues of the system in terms of all
of these physical parameters. Calculation of the first eigenvalue for a number of cases shows its variation with the
convective velocity for various medium porosities and allows a priori estimates of the profiles.
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INTRODUCTION

Intraparticle convective transport is of current interest in a num-
ber of separation and reaction processes. In previous work sev-
eral researchers [1-4] have considered the effects of convection
on the selectivity of sequential chemical reactions, general catalyst
performance, and on chemically induced convective currents. More
recently Stephanopoulos and Tsiveriotis [5] considered the effe-
cts of intraparticle hydrodynamic convection on nutrient transport
in biological peliets. Porous particles are also commonly used in
a number of separation processes including size exclusion adsorp-
tion, ion exchange, and affinity chromatography. Afeyan et al. [6]
have developed particles for high performance liquid chromatog-
raphy that display a significant hydrodynamic convective compo-
nent inside the particle. It is possible when large pressures are
applied to such packed columns containing highly porous particles
that convective fluid flow motion may become important. Rodri-
gues [ 7] studied the effects of intraparticle hydrodynamic convec-
tion on separation by adsorption. Recent work with gel columns
under an applied electrical field also shows a convective transport
component through the particle that arises from the electrical
field [8]. The objective of the present chapter is to show in the
geometric points of views how convective velocity, arising from
fluid motion, affects separation in the membrane. A mathematical
model for diffusive-convective transport is developed using one
dimensional x-direction. The model formulation is developed for
transient one-dimensional convective transport where the diffu-
sion coefficient of the solute, the convective velocity, and the ac-
cessible pore volume are allowed to vary in the membrane. The
operator thearetic method will utilize for constructing the solution
of similar composite media problems. Specifically, the methodo-
logy will be applied to a system of three layers to studv the trans-
port at the membrane. An analysis of the relative effects of diffu-
sive-convective transport will be performed by varying the dimen-

tTo whom correspondence should be addressed.

115

sionless Peclet numbers in fluid and solid phases. The three layer-
ed membrane system can approximate a membrane surrounded
by two stagnant boundary layers. Operator theoretic method in
this study leads to solutions to the formally non-self adjoint prob-
lem featured by the original differential model by recasting the
problem in a self-adjoint form. The emphasis is on developing
the underlying formal theory for a number of different physical
problems, and on the evaluation of the spectra (ie. the set of
eigenvalues of the transport differential operator) for the solutions
or on performing any parametric studies of the effects of the
physical properties on the solute concentration profiles. Detailed
consideration of the spectra will be presented to illustrate the
effects of the operating on the transient solutions. The basic stra-
tegy is to extract as much information as possible without perform-
ing detailed numerical calculations. In addition, numerical com-
putations are presented to illustrate the behavior of the system
in the different parameter regions predicted by the geometrical
analysis of the spectra.

THEORY

The species of interest, removing subscript “s” for convenience,
and assuming one dimensional transport in rectangular coordi-
nates 1s
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The Eq. (1) can be applied to composite membranes as shown
in Fig. 1. This again assumes low concentration, small diffusion
coefficient, and convective velocity for the solute of interest. Op-
erator-theoretic techniques are well-suited for developing an analy-
tical solution for this case. The solute of interest contributes to
the convective velocity, Eq. (1) is the standard convection-diffu-
sion equation. Paruleker and Ramkrishna [9] have considerad
single tubular flow reactor problems with infinite domain append-
ed sections. Novy et al. [10] have considered the numerical solu-
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Fig. 1. Schematic picture in membrane system.

tion to convection-diffusion problems in single reactors with finite
domain appended sections and various boundary conditions. In
the analysis pursued in this paper the “model problem™ will per-
mit, without loss of generality, an appropriate illustration of the
most important characteristics of the problem while keeping the
algebraic details at a minimum. Furthermore, the three-layered
membrane problem retains the most relevant aspects of the
steady state and dynamic behavior of the convective transport
related to more complicated problems. In the model formulation
each layer is assumed to be a different phase, and therefore flux
and equilibrium boundarv conditions are required at the mem-
brane interfaces. The total fluxes at the internal boundaries be-
tween each composite membrane must be equal and are given
by

cm‘numq:*DmQE'iv“cmum (2)
ax

The convective term in the above boundary conditions is not in-
cluded in former study since in that analysis, incompressible flow
is assumed. The species distribution coefficients, B, gives the lin-
ear phase equilibrium

Bm*lcm‘l:BmCm (3)
X=Xn;, m=1, 2

To the ahove set of boundary conditions must also be added bound-
ary conditions at the external boundaries; ie. at x=0 and x=L.
For the case of large solute in porous media these distribution
coefficients represent the fractional pore available to each class
of solute. For the case of a fixed concentration in the outer regions
these conditions are

B1 ci=Po
B c2=p1

The conditions of constant concentration used here would physi-
cally represent a well mixed region.

The nondimensional form of the differential equations in (1)
and boundary conditions (2)-(7) are given as follows. Dimension-
less variables are

at x=0 4)

at x=L 5)

_tD, _ualL

= L2 . Pe,,,_ Dm
D, X Cm
w=—, s=—, (/==
® D, > Co
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Transformation variable is C,=C,’ exp(—Pe, 5/2)
The differential Eq. (1) can be rewritten with dimensionless
terms of Eq. (6) and transformation variable as

3Cn _ o ( Cr Pe,,ﬁC,,,)
ot "\ gs? 4

6)

and boundary conditions are C,(0)=C,, C.(1)=C, exp(—Pe,/2)
and internal boundaries at s=s, for m=1, 2, 3 are given by

L(Sm)Om [ 3Chm |, 1 ColSm) | _ Em v 1(Su)Om 1
B ( Js FPen 2 )_ B -1
= 9Can Con s 1(Sm)
( 3 +Pey iy 2 ) N
and equilibrium condition is
Con(8m)m(Sm)= Cont 18I0 +1(Sm) ®)

where r,.(s;)= exp (Pe,s;/2) for arbitrary i and j. The solution meth-
odology for the general model will be illustrated with the case
of membrane surrounded by two fluid layers. A brief outline of
the operator formulation and solution methodology will be present-
ed in the next section and detailed consideration of the structure
of the spectrum of the operator (i.e. the set of eigenvalues of
the problem) will thereafter be made in order to illustrate the
technique. Several geometrical regions in the parameter space
of the spectrum will be studied and their implications to the model
dynamics will be clearly identified. Illustrations of the effects of
the parameters on the solution concentration profiles will also
be discussed in order to describe the dynamics of the solute accu-
mulation in the system.

Several physical parameters such as the Peclet number-the re-
lative ratio of convective transport to diffusive transport, ¢-the
relative ratio of diffusion coefficients, and B, of the equilibrium
distribution coefficient are included in the model given by the
Egs. (1)-(3). The model can accurately describe variations from layer
to layer in the system. For example, a variation in  represents
the pore space avilable for a particular molecule. The variation
in Pe (i.e. the ratio of convective motion to diffusive transport)
would occur if the convctive velocity changes from fluid phase
to solid phase. Convective veloity in the membrane arises due
to both changes in pore construction.

1. Solution Methodology

The solution to the transient problem will be solved by linear
operator theory. The following differential operations associated
with the physical problem and arising from the Eq. (6) are

C & Pekz‘\)

\ds 4 ©

where for k=1, 2, 3. The composite differential operation L (ie.,
the operations associated with the membrane of the physical prob-
lem) is now defined on the basis of Eq. (6) as L=[1;]5; where
Li=L. k=1, 2, 3 and L;=0, j£k

The domain associated with this differential operation is given
by

D(L)={weH and LweH: u(0)=0; u(s:) r.(ss)
= Ug - (Si)le +1(Se);

Bt g 6)=Ris: k=1, 2 3 wD=01  (10)
Be s 10%

where the following operations have been defined
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and r(s) - exp(Pes/2) tor any 1 and j. The composite Cifferential
operator defined in the Hilbert space. Hoas given by L L, DAL
H is direct-sum Hilbert space defined as

H-* £ H, 12)

with a k-inner product of the form

(u-. v~ Lo uy ds ko 102,03 (13)
Sl
In the above equation u, {ul.j 1.2 are vectorsin each Hilbert
space. Heo k=10 20 3.0 It we define an arbstrary vector we H
as

wie U, W, L1 L2 (14

then a1t is possible to write the following mner produ t for H

\
<w,, w>= X §lu. u.) (15
'

with the &'s given by

s o D0 B

0.1 -0 k=102 (16)
v ‘( ralSe) ﬁt

with 8.=1 and 8.>0 for all j=2, 3.

The transport cperator L given by Eq. (9) is a self-adjont, non-
negative definite operator in the direct sum Hilbert space H. From
the spectral theorem [ 11 eigenfunctions of L that belong to dit-
ferent eigenvalues are orthogonal to each other. Furthermore,
the set of egenfunctions constitutes 4 a complete set and all non-
zero eigenvalue of L. are pesitive.

The eigenvalue problem associated with the operator 1. pre-
viously defined in (9). is given by LW =3 W. This equation vields
the following two types of problems

PRI PN TR TSV S el N A an
and
TR P T R (S B Y (18)

The general solution to these two differential equations can be
written as

Ui, s) = Al 3) = Ben'ddl ) (19

where A, and B. are constants to be properly determined by the
use of the D (L), Two cases must be identificd to obtain the func-
tions n(A. $) and n'(A, s). For the first case. A>v.. the functions
n(a, s) and n'(A. s) are given by

NG, s) o sinfge(d) 87

(A s) cos. qi(k) s (20)
The second case anses when A<y, and the functions are given
by

n(x. s)- sinh_q'.(x) 3"

NG os) =cosh_q'da) s
In Egs. (17) and (18), . - (Pes/doc and " is given by s s k1t
k=2 3.3 "1 s . k-3 These changes of variables allows the
etzenfunction to automatically satisfy the external (Dinchl 1) bound-

ary conditions at s O and s - 1 with Bt and B =0. The appli-
cat.on of the boundary conditons at all the interfacial regions
faclitates the construction of the charactenistic equation. The co-
cfficient Ay 1s set equal to 1 and the other coefficients of A, and
B. are deternuned by applying the corresponding inner produc:
cquation to the boundary conditvns of ) (L1 The eigenvalues
are obtained from the characteristic equation yielded by the trans-
port operator L as

Q) Q. A 12h

where the function @ contains all the trgonome e and hyperbol-
1w eigenfunctions of QEA). and SUA) is directly a tunction of A
There are different types of functions depending upon the relative
values of Q and «. these funchons change their form from tngo-
nometric tangent functions to hvperbolic tangent functions, The
@ function contiins @ sum of the trigonometric functions, and
associted with cach function 15 a set of verticel hnes where the
function goes to zero, e where @ goes to infinity, These limiting
lines greatly faciliate the numerical calculation of the eigenvalues
since the eigenvalues can be found from the intersection of the
monotome function @ with the function @ It should be noted
thiat the degree of effort needed o construct the function @ in-
creases rapidly with the oumber of lavers in the problem. As the
physical properties change, re. the Pey and o, the tvpe ot eigen-
functions changes. The solution methodology for developing the
charactenstic equation will be analyzed i composite membrane
problem.

The formal solution to the transient problem can now be con-
stracted. Applying the mner product, Eq. t19), to Eq. (6) and uti-
lizing the proper 3's of Eq. (19). to give a self-adjoint eigenvalue
problem gives

A<t > Cus < s 22)

dr
where the function g, can be a function through sclf-adjoint bound-
arv conditions. And for the present problem C(0Y 1 and O 15
a given mput condition. The formal solution cun be easily written

d=

Co 2 onexpl AT i<Cr DL u>

J <o > expiadtl (23)

Eq (23 in turn can be written as a sum of a transient term which
15 descrnibed by the exponential term and a steady state term
as

. N B o<wLu >,
L Un. expl AT o0 0L w2 . f\34)

Co U

The steady state solution, C,0 0 of above equation i be devel-
oped trom the ordimary differential Eq. (6). The constant concen-
tration by Dirichlet boundary conditions used 11 the above prob-
lem can be physically achieved only with an infinite sink at the
boundaries This may correspond to i stagnant boundary leyver
with very Jarge well mixed cells. However, in order to aceount
for the funte size of the mixing cells outside of the composite
media it s necessary to perfarm o more detaled analvsis of the
physies of the boundary region.
2. Characterization of Spectrum [. in the Membrane

The charactenstic Eq. (215 18 given (or membrane probler
by

Korean J. Ch. E.(Vol. 12, No. 1Y
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Table 1. Various cases for eigenfunctions

Pef/Peg< 1.0 Pef/Peg> 1.0
Fluid  Solid Fluid Solid
Range phase phase Range phase  phase
Low region H T Low region H T
0<A<y, 0<A<yy
Middle region H H Middle region T H
Yr<A<LYy Ye <A<y
High region T T High region T T
A>y; A>y,

*H : Eigenfunction as Hyperbolic function
**T : Eigenfunction as Trigonometric function

ooneso( 220 & )]
Q [ Pe;Q + 2Q,
MQ;s:) L Pefoll(Q;sy) H{Qu(s2—s1)}

where Q.= A —v./4)"% II=n/n". The function, , in Eq. (25) is
a monotonic function of A while the function ® has the non-linear
transcendental function. This nolinear function may change its
geometrical shape depending upon the relative magnitudes of A,
Pe,, Pe, and ¢ since they change from hyperbolic co-tangents to
trigometric co-tangents. This very important feature of the spec-
trum of L seems to have been overlooked in the previous analysis
[11]. Four possible regions (as shown in Table 1) for the behavior
of © and @ as functions of A arise for the specific membrane
problem considered here. For example, at very low Pe, and Pe,,
the non-linear functions are both trigometric co-tangent functions.
Each co-tangent function has a group of vertical lines associated
with it for the function going to * infinity. These vertical lines
play an important role in the calculation of eigenvalues of the
operator L since they are apriori bounds between which the eigen-
values of the composite operator L are located. A bisection routine
is a natural choice for the numerical determination of these eigen-
values because the vertical lines define the range over which
to search for a root. Further evaluation of the spectra, again refer-
ring to Fig. 2, shows that only one or two roots can occur between
two adjacent vertical lines.

An interesting connection between these lines and the physical
problem can be made. The dynamics of the composite membrane
problem can be related to the dynamic of the individual single
layer problems though the position of the eigenvalues of the com-
posite operator L with respect to the location of the vertical lines.
The vertical lines represent the eigenvalues of the problem. The
eigenvalues for a single isolated layer with Dirichlet boundary
conditions can be given from Eq. (26). For the membrane problem
the vertical lines are given as

@{QM), M=

| eo

A=(nn/s ¥ +y; and A=(nn/1-2 s+, 27

where the subscript “a” denotes the single isolated layer and
v is defined in Eq. (17). Division by a,, the dimensionless size
of the fluid layer, and 1—2 a,, the dimensionless size of the mem-
brane layer, does not affect the comparison to the isolated case
since the overall length of the composite system cancels in the
product of A and t(=tD//x.p).

It is clear from Table 1, that at larger values of y; and vy, one
or both of the non-linear functions of the characteristic equation
may be hyperbolic co-tangent functions for the region for low

January, 1995
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Fig. 2. Spectra for y,=v,=0.0.

A. The characteristic equation and eigenfunctions will have to be
modified in this region in order to correctly calculate the eigenval-
ues. However, as A increases, i.e. for larger numbers of eigenvai-
ues, the system will revert to the high region when A>y, for
all k. In order to study the structures of the spectra and the
influence of the system parameters on the eigenvalues four gen-
eral cases will be considered. The first case, where no convection
occurs (i.e. yy=v,=0), serves as a base case for comparison. The
other three cases include y,=y, ¥>Y, and y<y, By changing
the values of parameters y, and v, the relative importance of
te diffusive transport and convective transport changes in each
layer.

Fig. 2 shows the spectra for the case of no convection. The
two functions @ and Q are plotted as functions of the general
axial coordinate 8,=Q;(A)s;. For this case with no convection ;
reduces to (A\)*%. The monotonic function, 2 is given by a constant
value of §/B,(=B) in composite membrane problem and the tran-
scendental function ® contains two sets of vertical lines. The first
eigenvalue is bounded between zero and the smaller of the two
isolated layer eigenvalues ie. A=(n/s;)* or A= {n/(1—2s)}?¢1.
Therefore, the composite eigenvalues move toward one of the
two isolated eigenvalues due to changes in both the relative sizes
of each layer and the relative magnitude of the diffusion coeffi-
cients in each layer, and this has a major influence on the dynam-
ics. For example, a large value of s; would give rise to control
by the fluid layer by making the composite eigenvalue closer to
the isolated fluid (layer) eigenvalue while a small value of a; and
small ¢ would give rise to control by the membrane as making
the composite eigenvalue go to zero and the increased capacity
of the membrane for solute drastically reduces the speed of the
dynamics of the interacting membrane layered system.

Once convection is introduced a number of interesting features,
as shown in Fig. 3, arise. In the case with equal convective trans-
port in all layers y,=y,=y in order to develop the composite
spectra in A it is necessary to consider the two regions A>y and
A<y. For A>vy the most convenient axial coordinate for a geomet-
rical representation of the spectra is 8, as defined above and given
by

s-A:\/k% 8 (28)
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and for A<y the proper scale is
2
53,:\/%’ ~h s 29)

The addition of the above region of the spectra (i.e. A<y) is unique
to this type of layered problem with convective transport. It is
possible to show that when the additional constraint is met at

Pe,

Pe, 6, (30

the € function is a straight line equal to —f for 0<8’, and equal
to B for 8,>0. 6= 1/Bo. In this case no eigenvalues occur in the
region between 0 and A=y and the first eigenvalue is bounded
by y and the smaller of the isolated and interacting eigenval-
ues

/s +v] or [{n/(1—2 s)Pd+v] (31

The first eigenvalue is thus shifted to larger values than for the
no convection case. Thus, convection increases the speed of the
dynamics of the process, i.e. it increases the rate at which steady-
state is approached. It also drastically changes the steady-state.

Fig. 3 shows two other possibilities for the behavior of the Q
function for this same case of y,=vy,. It is possible that for certain
parameter values the first eigenvalue can occur between 0 and
A=y. One can show that if

[DA=0—-QA=0)][PA=y—e)— QA=y—£)]<0 (32)

is met, where ¢ is some small distance from A=y, then a single
eigenvalue occurs between A=0 and A=y.

Fig. 4 shows the geometrical shape of ® and 2 functions verses
8, and &', for the next case where y>Y,. A number of roots may
occur in the region v, <A<y, This implies that the membrane
phase is reducing the speed of the dynamics of the process, i.e.
the eigenvalues of the isolated membrane phase, and thus the
membrane phase is controlling the dynamics of the composite
layered system. A very interesting spectrum occurs for the case
of v,<y, as shown in Fig. 5. This figure shows four specific exam-
ples of the behavior of the Q function. When the following rela-
tionships holds

As0 Aot

Fig. 4. Spectra for v/ >v,.
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Fig. 5. Spectra for v,<vy,.
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example (a) in Fig. 4 results and the first eigenvalues are shifted
to values greater than y. Example (b) arises when

2

Pe 6

Pe, (1 1)
—t = 34
6 G4

for no eigenvalue occurring between A=0 and A=y, A single
eigenvalue will occur between A=0 and A=+, if in addition to

2
Pe, &
P (1,1

e +¢1) (35)

the following constant is also satisfied

Korean J. Ch. E.(Vol. 12, No. 1)
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Fig. 6. Spectral solution by eigenvalues when Pe;=Pe,:=20.0: (1)
Pe;=Pe,=0, p=0=0.5; (2) Pe;=Pe,=1.0; (3) Pe,=Pe,=5.0;
(4) Pe;=Pe,=10.0; (5) Pe,=Pe,=20.0.

[@=0—Q0=0)] [PG=y—e)—QA=y—e)]<0 (36)

where again ¢ is a small and positive number. One of the main
advantages and purposes of analyzing the spectrum for this type
of problem in such detail is to obtain information on the interac-
tion between the various layers. As shown above the membrane
or fluid layer can control the dynamics of the process depending
upon the various parameter values. Numerical illustration will
be presented in a section below showing the effects of the differ-
ent parameter values on the behavior of the transient profiles
whose qualitative features are predicted by the analysis of the
spectral discussed in this section.

RESULTS AND DISCUSSION

1. Spectral Solution

A mathematical formulation is developed for the transient con-
vective transport system. The solution of the model requires ac-
curate calculation of eigenvalues. An efficient method to find ap-
propriate eigenvalues is discussed in this section. The characteri-
stic Eq. (26) is a nonlinear function. The solution to this equations
is achieved by substituting different eigenfunctions in four differ-
ent regions as shown in Table 1. The series solution oscillates
significantly in the high Peclet region. They, however, converge
for large Peclect numbers when the number of eigenvalues be-
comes large. For example, the transient solution oscillates less
at eigenvalues of more than 600 when Pe,/=Pe, is equal to 20.0
as seen in Fig. 6. Fig. 6 shows the spectral results by Pe, as the
convective velocity in the fluid phase increases. Transient solution
at large time becomes equal to the steady state solution. In order:
to reduce these difficulties, the transient solution is considered
as a sum of two terms like Eq. (24), a transient term and a steady
state term. The transient series rapidly converges because the
exponential term, exp (—At)/A, of the transient series allows rapid
damping, while the steady state term produces considerable oscil-
lation and slowly converges with increasing A. This steady state
term given by the series expansion can be substituted with the
steady state determined from the solution of the ordinary differ-
ential steady state equations. In the case of Pe,=Pe,=20.0, the
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transient series converged with 100 eigenvalues. The transient
solution exactly corresponds to steady state solution at large di-
mensionless time.

This operator-theoretic technique gives straightforward and
very elegant methodology to solve complicated nonlinear differen-
tial models without the complete numerical solution. This also
leads to the analysis of the composite system for understanding
and predicting the dynamic behavior of three layer composite
systems. The model developed can be numerically illustrated with
the application to convective transport in a membrane surrounded
by two stagnant fluids. The five parameters, Pe, Pe, ¢. § and
a, can be reduced to four parameterts Pe/Pe,, ¢, § and a,. The
Peclet number contains the major control variable, i.e. the fluid
flow rate. Here B is the membrane porosity, ie. the accessible
pore volume in the membrane phase for the solute of interest.
Generally 0<B<1 for membrane media. It is now possible to con-
sider the three cases (1) Pe;=Pe,; (2) Pe>Pe,; and (3) Pe,<Pe,.

The first case occurs when u(V/L)/u(V/L)=D,/D, and will
give rise to y,/=Y,. For Pe less than some critical value Pe., the
first eigenvalue will be bounded by y and y+(n/s;*. However,
above this critical value given by the solution of Eq. (26), the
upper limit of the first eigenvalue will be given by y. The lower
limit is zero. Fig. 7 shows the behavior of the first eigenvalue
as a function of y for various values of porosity, . The eigenval-
ues are calculated by the solution of the characteristic equation.
Increasing B increases A for large values of -, and thereby this
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Fig. 9. Concentration profiles for y,<y,, Pe,/=1.0, Pe,=3.0, f=0=
0.5.

increases the speed of the dynamics of the composite layered
system. However, for the case of small values of y the trend re-
verses. It is also interesting to note that in the region of small
v the first eigenvalue decreases with increasing y for small values
of B.

The case of Pe,<Pe, gives rise to the only realistic possibility
where v,<y,. The value of B plays a smaller role than in the last
case, although it will certainly affect the actual value of X; it has
no affect on the bounds for A;. Regions (a), (b), (c) and (d) given
in Fig. 8 correspond to those given in the spectra of Fig. 3. In
regions (a) and (b} the upper bound is always given by y.+(n/s))?
and the lower bound in v,. Case (b) represents a transition below
which two different behavior occur. For y, below a critical value
case (c) gives v, as the lower limit on the first eigenvalue, however
above this critical value of y, the upper limit for the first eigenval-
ue becomes v, Fig. 9 shows the transient concentration profiles
of the membrane for y,>y. The fluid region, as shown in this
figure, reaches the steady-state sooner than the membrane phase.
This clearly indicates the control of the dynamics of the composite
system by the membrane.

The last case occurs when Pe>Pe,. This occurs when u(V/L),
/ulV/Ly>D,/D; ie. when the ratio of the convective motion in
the membrane to that in the fluid exceeds the ratio of diffusive
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Fig. 10. Concentration profiles for vy >v,, Pe,=3.0, Pe,=1.0, f=0¢=
0.5.

motion. Fig. 10 shows transient concentration profiles for the case
with y/>v,. As the convection increases in both regions, the con-
centration in the membrane increases greatly. This implies a very
fast dynamic since the eigenvalues are all shifted to larger values.

CONCLUSION

An operator theoretic method has been used to solve a transient
and convective-diffusive problem in a composite membrane. A
complete analysis of the spectrum associated with the convective
transport operator of a membrane system has allowed for a full
description of the effects of system parameters including diffusion
coefficients, convective velocity, and membrane distribution coef-
ficient, on the dynamics of the problem. The analysis has shown
the power of the spectral analysis for understanding and predic-
ting the dyvnamic behavior of a fairly complicated composite sys-
tems. The methodology is reliable, straight-forward and elegant.
it allows an almost complete a priori characterization of the solu-
tion with minimal computation. Furthermore, the investigation has
also illustrated the power of operator-theoretic methods over
other numerical approaches to solve a vast class of problems of
transport in fairly complicated domains. The only numerical work
required in the solution of these problems is the solution of a
non-linear algebraic equation (i.e. the characteristic equation) which
can be easily accomplished by inexpensive computational routines.
Furthermore, these calculations can be greatly guided by analy-
zing the characteristic equation. The study reported in the paper
is useful to guide the analysis and the design of devices on labora-
tory and other scales required for a variety of membrane separa-
tions. Since the results of the study are highly analytical, they
will also be of great importance to guide the design of experi-
ments to obtain transport parameters in these applications.

NOMENCLATURE
a : cross sectional area
a : thickness of the single isolated layer in Eq. (27)
G : solute concentration
C, . dimensionless concentration of solute

D, :diffusion coefficient of species
D(L) : domain of the differential operation L
{ : feed to external boundary region
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: volumetric flow rate into external boundary regions f
: direct-sum Hilbert space 0

: feed to external boundary region
. first layer of the composite media

: layer of the composite membrane <.,> :composite inner product

: differential operation defined in Eq. (17)

F
H
k
L s total length of composite membrane
Le
Pe :Peclet number

Pe, :Peclet number in composite gel L
Pe. :Peclet number in buffer solution

q :functions defined after Eq. (17) 2.
q :functions defined after Eq. (18)

s : dimensionless term (x'/L) in membrane layer 3.
t : time variable 4.
u : convective velocity

w  :element of the Hilbert space H 5.
X : dimensional spacial coordinate

X, :length of membrane 6.
Greek Letters 7.
® : diffusivity ratio

B : porosity of the membrane 8.
Bs :effective distribution coefficient of solute 9.
® :monotonic function of A

1 :transcendental function of A 10.
n : fundamental solutions to differential equation

t"  :dimensionless time in three layer problem 11
2} : non-dimensional parameter

A : eigenvalue

X : normalization factor of the eigenvector

Subscripts

January, 1995
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