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Abs t r ac t -The  problem analyzed in this paper is a specific application of the composite membrane. General diffusion 
and convection formulation is presented for the dynamk: problem. The spectral analysis considers convective transport 
of a single solute species across a one dimensional membrane system. The solution is obtained using operator theoretic 
methods. The geometrical structure of the spectrum of the, operator is determined for the complete range of the 
various parameters including the distribution coefficient, the convective velocity and the diffusion coefficient. The 
structure of the spectrum allows a complete characterizatkm of all the eigenvalues of the system in terms of all 
of these physical parameters. Calculation of the first eigenvalue for a number of cases shows its variation with the 
convective velocity for various medium porusities and allows a priori estimates of the profiles. 
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INTRODUCTION 

Intraparticle convective transport is of current interest in a num- 
ber of separation and reaction processes, tn previous work sev- 
eral researchers [-1-4] have considered the effects of convection 
on the selectivity of sequential chemical reactions, general catalyst 
performance, and on chemically induced convective currents. More 
recently Stephanopoulos and Tsiveriotis [5] considered the effe- 
cts of intraparticle hydrodynamic convection on nutrient transport 
in biological pellets. Porous particles are also commonly used m 
a number of separation processes including size exclusion adsorp- 
tion, ion exchange, and affinity chromatography. Afeyan et al. ]-6~] 
have developed particles for high performance liquid chromatog- 
raphy that display a significant hydrodynamic convective compo- 
nent inside the particle. It is possible when large pressures are 
applied to such packed columns containing highly poroas particles 
that convective fluid flow motion may become imporlant. Rodri- 
gues E7] studied the effects of intraparticle hydrodynamic convec- 
tion on separation by adsorption. Recent work with gel columns 
under an applied electrical field also shows a convective transport 
component through the particle that arises from the electrical 
field ~8]. The objective of the present chapter is to show in the 
geometric points of views how convective velocity, arising from 
fluid motion, affects separation in the membrane. A mathematical 
model for diffusive-convective transport is developed using one 
dimensional x-direction. The model formulation is developed for 
transient one-dimensional convective transport where, the diffu- 
sion coefficient of the solute, the convective velocity, and the ac- 
cessible pore volume are allowed to vary in the membrane. The 
operator theoretic method will utilize for constructing the solution 
of similar composite media problems. Specifically, the methodo- 
logy will be applied to a system of three layers to stud!; the trans- 
port at the membrane. An analysis of the relative effects of diffu- 
sive-convective transport will be performed by varying the dimen- 

tTo whom correspondence should be addressed. 

sionless Peclet numbers in fluid and solid phases. The three layer- 
ed membrane system can approximate a membrane surrounded 
by two stagnant boundary' layers. Operator theoretic method in 
this study leads to solutions to the formally non-self adjoint prob- 
lem featured by the original differential model by recasting the 
problem in a self-adjoint form. The emphasis is on developing 
the underlying formal theory for a number of different physical 
problems, and on the evaluation of the spectra (i.e. the set of 
eigenvalues of the transport differential operator) for the solutions 
or on performing any parametric studies of the effects of the 
physical properties on the solute concentration profiles. Detailed 
consideration of the spectra will be presented to illustrate the 
effects of the operating on the transient solutions. The basic stra- 
tegy is to extract as much information as possible without perform- 
ing detailed numerical calculations. In addition, numerical com- 
putations are presented to illustrate the behavior of the system 
in the different parameter regions predicted by the geometrical 
analysis of the spectra. 

THEORY 

The species of interest, removing subscript "s" for convenience, 
and assuming one dimensional transport in rectangular coordi- 
nates is 

Oc" - u,, Oc~ + h Oec~ 
a t -  . . . .  ox _= 0~ 7 (1) 

The Eq. (1) can be applied to composite membranes as shown 
in Fig. 1. This again assumes low concentration, small diffusion 
coefficient, and convective velocity for the solute of interest. Op- 
erator-theoretic techniques are well-suited for developing an analy- 
tical solution for this case. The solute of interest contributes to 
the convective velocity, Eq. (1) is the standard convection-diffu- 
sion equation. Paruleker and Ramkrishna E9~ have considered 
single tubular flow reactor problems with infinite domain append- 
ed sections. Now et al. El0] have considered the numerical solu- 
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Fig. I. Schematic picture in membrane system. 

tion to convection-diffusion problems in single reactors with finite 
domain appended sections and various boundary conditions. In 
the analysis pursued in this paper the "model problem" will per- 
mit, without loss of generality, an appropriate illustration of the 
most important characteristics of the problem while keeping the 
algebraic details at a minimum. Furthermore, the three-layered 
membrane problem retains the most relevant aspects of the 
steady state and dynamic behavior of the convective transport 
related to more complicated problems. In the model formulation 
each layer is assumed to be a different phase, and therefore flux 
and equilibrium boundary conditions are required at the mem- 
brane interfaces. The total fluxes at the internal boundaries be- 
tween each composite membrane must be equal and are given 

by 

- D . .  0C'~ + 1 -;- C~ - lUrn , 1 = -- Dn, 0Crn 
0x ~ -  +c~u~ (2) 

x=x,,,; m - l ,  2 

The convective term in the above boundary conditions is not in- 
cluded in former study since in that analysis, incompressible flow 
is assumed. The species distribution coefficients, [3, giw.~s the lin- 
ear phase equilibrium 

x = x . ;  m = l ,  2 

To the above set of boundary conditions m u a  also be added bound- 
ary conditions at the external boundaries; i.e. at x=O and x = L. 
For the case of large solute in porous media these distribution 
coefficients represent the fractional pore available to each class 
of solute. For the case of a fixed concentration in the outer regions 
these conditions are 

{3~ c~=[3,, c, at x = 0  (4) 

132 c2 = 13~ cL at x = L (5) 

The conditions of constant concentration used here would physi- 
cally represent a well mixed region. 

The nondimensional form of the differential equations in (1) 
and boundary conditions (2)-(7) are given as follows. Dimension- 

less variables are 

tD, 
Pe,. -= 

D. x C,,___~ 

Transformation variable is C,,=C,, '  exp(-Pe , ,  s/2) 
The differential Eq. (1) can be rewritten with dimensionless 

terms of Eq, (6) and transformation variable as 

0C,. - 0 ~ (  02C" Pe4C~ ) 
0~ 0s 2 (6) 

and boundary conditions are Co(0)=Co, C,.(1)=CL exp(--PeL/2) 
and internal boundaries at s=s, .  for m = l ,  2, 3 are given by 

rm(s.)o~ ( _  oC~ n C.(s~)) r .~ l (s . )0 . ,  
13m as t v e , . - - - - ~ )  - 13,.- a 

( o C . , l  + P e . + l ~ )  (7) 
0s �9 

and equilibrium condition is 

C.(s,.)r.(s~) = C,.+ l(s,.)r. + ~(s,.) (8) 

where r,.(sj)= exp (Pepsi2) for arbitrary i and j. The solution meth- 
odology for the general model will be illustrated with the case 
of membrane surrounded by two fluid layers. A brief outline of 
the operator formulation and solution methodolol~ will be present- 
ed in the next section and detailed consideration of the structure 
of the spectrum of the operator (i.e. the set of eigenvalues of 
the problem) will thereafter be made in order to illustrate the 
technique. Several geometrical regions in the parameter space 
of the spectrum will be studied and their implications to the model 
dynamics will be clearly identified. Illustrations of the effects of 
the parameters on the solution concentration profiles will also 
be discussed in order to describe the dynamics of the solute accu- 
mulation in the system. 

Several physical parameters such as the Peclet number-the re- 
lative ratio of convective transport to diffusiw. ~ transport, O-the 
relative ratio of diffusion coefficients, and 13,, of the equilibrium 
distribution coefficient are included in the model given by the 
Eqs. (1)-(3). The model can accurately describe variations from layer 
to layer in the system. For example, a variation in 13 represents 
the pore space avilable for a particular molecule. The variation 
in Pe (i.e. the ratio of convective motion to diffusive transport) 
would occur if the convctive velocity changes from fluid phase 
to solid phase. Convective veloity in the membrane arises due 
to both changes in pore construction. 
!. Solut ion Methodology 

The solution to the transient problem will be solved by linear 
operator theory. The following differential operations associated 
with the physical problem and arising from the Eq. (6) are 

, d ~ peke ' 1 
Lk-=-O~l ds 5 , ,  _ ~- ) (9) 

where for k = 1, 2, 3. The composite differential operation L (i.e., 
the operations associated with the membrane of the physical prob- 
lem) is now defined on the basis of Eq. (6) as L----VL:~]8~k where 
L~-=Lk, k== 1, 2, 3 and I~k~O, j~k  
The domain associated with this differential operation is given 

by 

D(L)---Iw~H and Lw~H:  m(0)=0; u~(s~) r,,(sk) 
= uk - L(sDrk. l(Sk); 

[3#0~*_1 N~l(sD=Nk(sk): k = l ,  2, 3; th(1)=0] (10) 

where the following operations have been defined 
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, du. Pc :'  'ir,(s ) I I 1 ) .R.(~).: i, rt* 

and r(~.) -exp(Pt..nJ2) tor any i and j. The conlposite ( i f fe len l ia l  
operator  def ined in the Hi lbt.r t  sp;ict,, t l .  is g iven by I . -  {L, I)(I.)t. 
| l  is d i rect-sum l l i l be r l  space defined as 

1 t : - =  Z I L  112) 

with a k- inner  l)r,~tucl ,if t i l t '  form 

CI i 
{11.. l l . )<--  I It:< tl.~ ( IS k " ],  :~, :~ 113) 

In the above equat ion u, iu I. j l . 7 are vt-ch>r- m ear h l l i l her t  
space, tt,. k -  1. 2 3. If  we def ine ;ill ar l ) i t rary vt, chlr  tit- II 

as 

t ;  : f i l l ,  t l , , . - . l l < . . . t l  . . . .  i -  1. 2 ( l - l l  

l he i l  it in l~ss ib le io w i i t e  the fol lot~inR inll``'r [ ) rodt i  t f l l r  I I  

( i t : .  i t  ) =  }": 8,ti l l. u:). ( l ~ )  

with the 8's given by 

& . , _ : & ( r , . , ( s , )  1; 1:1~ k:. 1. 2 (16) 
r,(n,) ' [~.:  ' 

with 8: = 1 and 6 .>0 for all j ---2. 3. 
The transl~wt operator [ ~iven by F.q. (9) is a :-,elf-adj,nnt. non- 

negative definite operator  in I he direct sum ttilbcrt spat,. I I. Frllnl 

the spectral theorem [ 11 i ei~t.nfunclions of 1. that beh nK to dif- 

ferent eigenvaluen are nrlh~l~onal t -  each other. Ful lhurm-rt . .  

the set of elgenfunctions constitutes a a complete set and ;ill n,m- 

zer<l ei.genvalue of i. are Ix.sitive. 

The eigenvalue problem associated with the , o e r a t - r  I .  pre- 

viously defined in (9). is given hv I.VV :: ).%%. This equati,m yields 
the fo l lowing two types of problems 

u/ '  t ck:C'.)u, : (' q,:: tXl:  :'. y, 117) 

and 

u/ '  ~ q',~(),)u~ : l )  q'~(;, ,)=,f,  - . X  (18) 

The general  solution to these  two differential equationn can he 

written a> 

u,C'., s ) - :LGdX,  s)~ lLq '<( ; t ,  s) 119) 

where  .a~ and I~,~ are constants to he properly de te rmined  by ti l t '  
use of tile I) (I.). Two ca.-,es must be identified hi obtain the func- 

tions q(;'., s) and q'(;'.. >). For the first cane. k>'f, ,  the functmns 

G(;,.. s) and q'O.. s) are given t)y 

gO.. s ) -  sinEq,(k) s'] 
q'O'., s) cos7 qAk) s ' i  (20) 

The second cast. arises when ).<y~ and the funcllons are Ri~.ell 

by 

rift'., n)- r4nhL.q'=C'.) s ' i  

n'C'., s) : cll~h~q',(X) ' ( i  

In Eqs. (17) and (18L 7, (Pe=-/4)o~ alld s' i.~ ~iven hy s' s. k 1: 
k=2 .  3. s -  1 s, ,. k �9 '3. These  changes of variables ;dhlws tilt' 

e i~enfuncti .n hi automatically satisfy the exh ' rnal  (1)irlchl .I) b, mnd- 

arv condi l , ,n< ;it s I }  and n - 1 with B. : l l  and B ::0. The ;.lppli- 
cat;tin - f  t i le bound;try ci lr idit l l i l l~ ;it all ti lt. i r l lerfacial rt'Rion~, 
far! l i tales the conslructi~m of the character ist ic equ;i l ion. The co- 
ef l lc lenl  Ai is .'~ei equal hi 1 alld lhe olht ' r  cot ' f f ic lenls ,ll ."t, alld 
B, ;ire del l ' rnt i l~ed by ;41)t)lyln R thv corlespllndln<i.{ i l int.r  pie(Jut:  
eqt l ; l l i l l l l  tO lilt" [ i uu l ld , l f y  condi l i , ,ns ,,f [ i  (LI. The t ' lgt 'nvlt i t le~, 

art, obta ined from the character ist ic equat inn y ie lded by the trans- 
pot1 operator  I. ;is 

lit)..) O I Q ( Z ) .  ).~ (21) 

where  the luncthl i l  ~ contains all the t r l l ,4onomerlc and h y p e r b o l  
ic ,.,igui:functior~s ,if QIX). and f'~(A) i:., d irectb, a functiun ,~I ~'.. 
There  are d i f ferent  types . f  functi~ms del:,endin g upun the :elat ix u 
values, ,ff f~ rind I., lhe.~v functu,n., change their  fl~rm lrHnl t r ig , ,  
nome t r i c  lal l .~ent l t inCl l l lns to hyperhH l i c  la i l~e l i l  (uncle,n,, .  The  

(I) fnnclJ(ql c~,nliiillS a ~,tlrn qd (hi, tr(:dOllOrllt'tric fnr lc l i ( l l iS. . i l ld  
as,,(it'ialed wi th  each funcli~lll is a ~,t'l Hf verti,~:l hilt,4 t~ht.rt, thv 
lu l lc t ion goes hi ZC'lO. i.t. where  (!) ~(les hi inf ini ty.  Tt lese l imi t ing 
lines greatly facil iate the numerical calculation of tht. eiRenvalue~. 

,4(llt'e thc  elgel lval t les can he f ound  f rmn  t i le  ti l ters, ee l (on ,if the 

l l l()nt)tlllliC tun(+lic~ll l'~ wi th  tht. f t lnct ion ~ It should h``" ntJted 
lh;tl the de~ree l/f effiwt necdt 'd Io conMrut t  t i le fu l ic l ion (I) in- 
crcitnt,.~ ral) ldly wi th  lhe nl ln lh l , r  of layers In lhu problenl .  Ak li lt: 
phy~,lcal pr,>pertit 's chan:de, i.e. tht. Pe~ and o,. Ihe lype il l ei:den- 
f t incl ions thanj~e.,-. The -, l l lul ion i I le t l lodolo~) fi~r dt.\ 't, lopil lR lht. 
tharact t , r is t lc  equall~ll l  wi l l  he analyzed ill clln171-,Jte ln t .n lbr i ln t .  

Il l, ,hlem. 
The folnid]  sl lhl l l i l l /  i l ,  l i lt" Ir i i l l- l t>l lt problem t'ii l l ni)tl.- l i t '  t ' i l l l- 

sl iciclt 'd. ;\pplyJn:d the ln i ler  pr, iducl. I':q. (19). hi l'.'q. 16) <lnd uli- 
l izulg lilt" proper  ~,'s i l l  Eq. (19). h) :dive a self-adj l i int eiRenvalu~' 

pr, ,hlenl Rive> 

d<L' .  u, ,> 
L,<L ' .  u .>  ; <~: .  u,,> {22} 

dt:' 

~tl~'hl.,rt. �9 the hlnct(,m R,, can hu; i  fun``li,m thrl~tlgh ,-elfIa(tji:,(nl I)~lund I 
; ir; clmdil i .n.>. : \nd for the i)rt'.;ent prnblt, m C ( ( ) t  I and L, rs 
a Riven input c(mdi t ( (m The formal sl) l t l t io l l  ,.';in he easily wr i l t cn  

C,,. ".2, :i,,. UXl){ .L/l:'l !<L't.'-' IH. u,,> 

�9 f '<~. .  u.,>VXl>t;%t)dtl <2:11 

[ {q ('.?,:{)ill l u r i l  ``�9 he Wrl l t t ' l l  ,l> ;t ,-,unt i) l  +t lr,I;i..,,it'l!t t e rn l  wh ich  

is dencrihed h.', tilt: t .xponent(al  term ,md a -,teadv stah, tur in 

C,, C , , ' .  ,Y ,u " "  exp( ,L,r'Jl<'C(-.' I)l. u,'> <14,,;,.u.>~j:24) 

"l'ht" Mea(j'~ s la te  s(l lUtion. (_ .  ~] ab(Ivt, t 'qLl;It lon fan  bt- dt.vtd- 

oped from the . rdinalw differential Eq (6i. "]'h( collsl;.tnl i'l)rlcen- 
tratilln hv Dirichlet boundary conditil~n~ tl~e(t i.1 the al)o~t, prob- 

lem can bt, physical ly achieved .n l y  wi lh  an inf in i le  sink :.It th,: 
hiRnld,:tl'Jes Thi.-, may t , i r re~l~) l ld l,> H .'.4aRtliilll hot l t ldary lavur 
wi th  very  large wel l  mixt,  d c t ,  lls. llmwv<_,r, in . rd t . r  t,, acc,,unt 
fro the f inlt t '  Mze ~l" thu mix(n i,{ cell.- -ut.-,Id<' ol tht, c~ltnpllrqt,.' 
111i.'dia it in nete:-,sarv h) pe r f l , l l i i  il ii l~llt, dutmh.d ;IIIHIVSI~ Ill Ih," 
phy-i``"- i~f the hnundar.', rt'RIon. 
2. C h a r a c t e r i z a t i o n  of  S p e c t r u m  1. in the  M e m b r a n e  

The characterl-4ic Eq. (21j is Rivcn I,>r nl,.mfl}ranv lJrl~hk.iq 

h\ 
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Table 1. Various cases for eigenfuncfions 

Pe//P% < 1.0 Pe/Peg > 1.0 
Fluid Solid Fluid Solid 

Range phase phase Range phase phase 

Low region H T Low region H T 
0<k<u 0<k<u 

Middle region H H Middle region T H 

yc<k<y~ T~<L<Ys 
High region T T High region T T 

k>yr k>yg 
*H : Eigenfunction as Hyperbolic function 
**T : Eigenfunction as Trigonometric function 

P e ,  2 Pez2 1 

OlQ(X), xl = n(Q~s0 pe,~,n(Q,s,) n{~(s~-s~)} 

where I ~ =  0 . - y d 4 )  v2, I I=q /q ' .  The function, fL in Eq. (25) is; 
a monotonic function of L while the function �9 has the non-linear 
transcendental function. This nolinear function may change its; 
geometrical shape depending upon the relative magnitudes of L, 
Pet, Pe~ and 0 since they change from hyperbolic co-tangents to 
trigometric co-tangents. This very important feature of the spec-. 
trum of L seems to have been overlooked in the previous analysis 
[-11]. Four possible regions (as shown in Table 1) for the behavior 
of f l  and q~ as functions of k arise for the specific membrane 
problem considered here. For example, at very low Pe I and P% 
the non-linear functions are both trigometric co-tangent functions. 
Each co-tangent function has a group of vertical lines associated 
with it for the function going to + infinity. These vertical lines 
play an important role in the calculation of eigenvalues of the 
operator L since they are apr/ori bounds between which the eigen.- 
values of the composite operator L are located. A bisection routine 
is a natural choice for the numerical determination of these eigen- 
values because the vertical lines define the range over which 
to search for a root. Further evaluation of the spectra, again refer- 
ring to Fig. 2, shows that only one or two roots can occur between 
two adjacent vertical lines. 

An interesting connection between these lines and the physical 
problem can be made. The dynamics of the composite membrane 
problem can be related to the dynamic of the individual single 
layer problems though the position of the eigenvalues of the com- 
posite operator L with respect to the location of the vertical lines. 
The vertical lines represent the eigenvalues of the problem. The 
eigenvalues for a single isolated layer with Dirichlet boundary 
conditions can be given from Eq. (26). For the membrane problem 
the vertical lines are given as 

L= (nn/s02 + yj and k =  (n~ /1 -  2 sa)20l + y~ (27) 

where the subscript ~a" denotes the single isolated layer and 
y is defined in Eq. (17). Division by a ,  the dimensionless size 
of the fluid layer, and 1 -  2 al, the dimensionless size of the mem- 
brane layer, does not affect the comparison to the isolated case 
since the overall length of the composite system cancels in the 
product of k and ~(= tD,2/x~,Z). 

| t  is clear from Table 1, that at larger values of "~t and y~ one 
or both of the non-linear functions of the characteristic equation 
may be hyperbolic co-tangent functions for the region for low 

Fig. 2. Spectra for y i=yg=0.0 .  

k. The characteristic equation and eigenfunctions will have to be 
modified in this region in order to correctly calculate the eigenval- 
ues. However, as k increases, i.e. for larger numbers of eigenval- 
ues, the system will revert to the high region when L>yk for 
all k. In order to study the structures of the spectra and the 
influence of the system parameters on the eigenvalues four gen- 
eral cases will be considered. The first case, where no convection 
occurs (i.e. yj= yg= 0), serves as a base case for comparison. The 
other three cases include yt=yg, Yt>Yg and yl<yg. By changing 
the values of parameters YI and yg, the relative importance of 
te diffusive transport and convective transport changes in each 
layer. 

Fig. 2 shows the spectra for the case of no convection. The 
two functions ~ and f~ are plotted as functions of the general 
axial coordinate 8~=Q~(k)sl. For this case with no convection 8~ 
reduces to (k)v2. The monotonic function, 11 is given by a constant 
value of 13t13e(= 13) in composite membrane problem and the tran- 
scendental function (I) contains two sets of vertical lines. The first 
eigenvalue is bounded between zero and the smaller of the two 
isolated layer eigenvalues i.e. k=(n/s l)  2 or k={n/(1-2sx)}z01. 
Therefore, the composite eigenvalues move toward one of the 
two isolated eigenvalues due to changes in both the relative sizes 
of each layer and the relative magnitude of the diffusion coeffi- 
cients in each layer, and this has a major influence on the dynam- 
ics. For example, a large value of sa would give rise to control 
by the fluid layer by making the composite eigenvalue closer to 
the isolated fluid (layer) eigenvalue while a small value of a~ and 
small (I)1 would give rise to control by the membrane as making 
the composite eigenvalue go to zero and the increased capacity 
of the membrane for solute drastically reduces the speed of the 
dynamics of the interacting membrane layered system. 

Once convection is introduced a number of interesting features, 
as shown in Fig. 3, arise. In the case with equal convective trans- 
port in all layers y ~ : y e : y  in order to develop the composite 
spectra in k it is necessary to consider the two regions k>y and 
k<y. For k > ' / t h e  most convenient axial coordinate for a geomet- 
rical representation of the spectra is 8x as defined above and given 
by 

5~ -k~ -~ - - - -~  sl (28) 
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Fig. 3. Spectra for y/=y~=y. 
Fig. 4. Spectra for yj>yg. 

and for k<y the proper scale is 

,~pet  ~ 
8'x = V ~ -  - k sl (29) 

The addition of the above region of the spectra (i.e. k<y) is unique 
to this type of layered problem with convective transport. It is 
possible to show that when the additional constraint is met at 

Per 
= 02 (30) 

Pe,, 

the f l  function is a straight line equal to -13 for 0<6'x and equal 
to 13 for 8~.>0. 02 = 1/130. In this case no eigenvalues occur in the 
region between 0 and k = y  and the first eigenvalue is bounded 
by y and the smaller of the isolated and interacting eigenval- 
ues 

[(n/si)2+y] or [{rr/(1-2 s,)}20,+y] (31) 

The first eigenvalue is thus shifted to larger values than for the 
no convection case. Thus, convection increases the speed of the 
dynamics of the process, i.e. it increases the rate at which steady- 
state is approached. It also drastically changes the steady-state. 

Fig. 3 shows two other possibilities for the behavior of the 12 
function for this same case of yt=yg. It is possible that for certain 
parameter values the first eigenvalue can occur between 0 and 
k=y .  One can show that if 

[~(L= 0)- fl(k= 0)] EO(k= y -  c)- l'~(k= y-~:)] <0 (32) 

is met, where ~ is some small distance from L=y,  then a single 
eigenvalue occurs between X=0 and k=y.  

Fig. 4 shows the geometrical shape of �9 and 12 functions verses 
fix and f'~ for the next case where y~>yx. A number of roots may 
occur in the region ~(e<k<yt. This implies that the membrane 
phase is reducing the speed of the dynamics of the process, i.e. 
the eigenvalues of the isolated membrane phase, and thus the 
membrane phase is controlling the dynamics of the composite 
layered system. A very. interesting spectrum occurs for the case 
of y,<yg as shown in Fig. 5. This figure shows four specific exam- 
ples of the behavior of the 12 function. When the following rela- 
tionships holds 

Fig. 5. Spectra for yf<~. 

2 
P e , <  02 
Peg ( 1  + 1 )  

example (a) in Fig. 4 results and the first eigenvalues are shifted 
to values greater than Yr. Example (b) arises when 

2 
Pc, _ 02 

for no eigenvalue occurring between k = 0  and L=y~: A single 
eigenvalue will occur between k = 0  and k=y~ if in addition to 

2 
Pej> o2 
Peg (i+i  

the following constant is also satisfied 

(35) 
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Fig. 6. Spectral solution by eigeavalues when Pef=Peg::20.O: (I) 
Pef=Pe~=0, [3=0=0.5; (2) Pe/= PeK= 1.0; (3) Pe/-= Peg= 5.0; 
(4) Pe/---Pe~= 10.0; (5) Pef=Pe~:20.0. 

[~ (k= O)-,Q(X= 0)] [O(k= y -  e)-  l"~(k= y -  ~;)] <0 (36) 

where again ~ is a small and positive number. One of the main 
advantages and purposes of analyzing the spectrum for this type 
of problem in such detail is to obtain information on the interac- 
tion between the various layers. As shown above the membrane 
or fluid layer can control the dynamics of the process depending 
upon the various parameter values. Numerical illustration will 
be presented in a section below showing the effects of the differ- 
ent parameter values on the behavior of the transient profiles 
whose qualitative features are predicted by the analysis of the 
spectral discussed in this section. 

R E S U L T S  AND DISCUSSION 

1. Spectral  Solut ion 
A mathematical formulation is developed for the transient con- 

vective transport system. The solution of the model requires ac- 
curate calculation of eigenvalues. An efficient method to find ap- 
propriate eigenvalues is discussed in this section, The characteri- 
stic Eq. (26) is a nonlinear function. The solution to this equations, 
is achieved by substituting different eigenfunctions in four differ- 
ent regions as shown in Table 1. The series solution oscillates 
significantly in the high Peclet region. They, however, converge 
for large Peclect numbers when the number of eigenvalues be-. 
comes large. For example, the transient solution oscillates less; 
at eigenvalues of more than 600 when Pej=P% is equal to 20.0 
as seen in Fig. 6. Fig. 6 shows the spectral results by Pe,, as the,. 
convective velocity in the fluid phase increases. Transient solution 
at large time becomes equal to the steady state solution. In order  
to reduce these difficulties, the transient solution is considered 
as a sum of two terms like Eq. (24), a transient term and a steady 
state term. The transient series rapidly converges because the 
exponential term, exp ( -  L~)/k, of the transient series allows rapid 
damping, while the steady state term produces considerable oscil- 
lation and slowly converges with increasing k. This steady state 
term given by the series expansion can be substituted with the 
steady state determined from the solutkm of the ordinary differ- 
ential steady state equations. In the case of Pe,-=Pe.:20.0, the 

Fig. 7. First eigenvalue at different porosity. 

transient series converged with 100 eigenvalues. The transient 
solution exactly corresponds to steady state solution at large di- 
mensionless time. 

This operator-theoretic technique gives straightforward and 
very elegant methodology to solve complicated nonlinear differen- 
tial models without the complete numerical solution. This also 
leads to the analysis of the composite system for understanding 
arid predicting the dynamic behavior of three layer composite 
systems. The model developed can be numerically illustrated with 
the application to convective transport in a merabrane surrounded 
by two stagnant fluids. The five parameters, Pel, Pe~, O, [3 and 
al can be reduced to four parameterts PeJPee, 0, [3 and a~. The 
Peclet number contains the major control variable, i.e. the fluid 
flow rate. Here [3 is the membrane porosity, i.e. the accessible 
pore volume in the membrane phase for the solute of interest. 
Generally 0<[3<1 for membrane media. It is now possible to con- 
sider the three cases (1) Pe/=Pe~; (2) Pej>Pe~; and (3) Pe,<Pex. 

The first case occurs when ue(V/L)ju!(V/l.),= Dg/D~ and will 
give rise to ~(r = ye. For Pe less than some critical value Pe,~t the 
first eigenvalue will be bounded by y and y+(n/s~) 2. However, 
above this critical value given by the solution of Eq. (26), the 
upper limit of the first eigenvalue will be giwm by y. The lower 
limit is zero. Fig. 7 shows the behavior of the first eigenvalue 
as a function of )' for various values of porosity, [3. The eigenval- 
ues are calculated by the solution of the characteristic equation. 
Increasing [3 increases k for large values of 7, and thereby this 
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Fig. 8. First eigenvalue as a function of Y/<Tr 

Fig. 9. Concentration profiles for yl<y~, Pe/= 1.0, Pe,=3.0, [3=0= 
0.5. 

increases the speed of the dynamics of the composite layered 
system. However, for the case of small values of g the trend re- 
verses. It is also interesting to note that in the region of small 
g the first eigenvalue decreases with increasing 7 for small values 

of 13. 
The case of Pe,<Peg gives rise to the only realistic possibility 

where yt<Y~. The value of 13 plays a smaller role than in the last 
case, although it will certainly affect the actual value of k~ it has 
no affect on the bounds for )~. Regions (a), (b), (c) and (d) given 
in Fig. 8 correspond to those given in the spectra of Fig. 3. hi 
regions (a) and (b) the upper bound is always given by y.+(~/s0 2 
and the lower bound in 7,. Case (b) represents a transition below 
which two different behavior occur. For 7~ below a critical value 
case (c) gives y~ as the lower limit on the first eigenvalue, however 
above this critical value of Yt the upper limit for the first eigenval- 
ue becomes Y,. Fig. 9 shows the transient concentration profiles 
of the membrane for u The fluid region, as shown in this 
figure, reaches the steady-state sooner than the membrane phase. 
This clearly indicates the control of the dynamics of the composite 
system by the membrane. 

The last case occurs when Pe~>Pe~. This occurs when ug(V/L)~ 
/ufV/L)~>DJD t i.e, when the ratio of the convective motion in 
the membrane to that in the fluid exceeds the ratio of diffusive 

Fig. 10. Concentration profiles for 7i>u Pe/=3.0, Pex= 1.0, 13=tp= 
0.5. 

motion. Fig. 10 shows transient concentration profiles for the case 
with y~>u As the convection increases in both regions, the con- 
centration in the membrane increases greatly. This implies a very 
fast dynamic since the eigenvalues are all shifted to larger values. 

CONCLUSION 

An operator theoretic method has been used to solve a transient 
and convective-diffusive problem in a composite membrane. A 
complete analysis of the spectrum associated with the convective 
transport operator of a membrane system has allowed for a full 
description of the effects of system parameters including diffusion 
coefficients, convective velocity, and membrane distribution coef- 
ficient, on the dynamics of the problem. The analysis has shown 
the power of the spectral analysis for understanding and predic- 
ting the dynamic behavior of a fairly complicated composite sys- 
tems. The methodology is reliable, straight-forward and elegant. 
It allows an almost complete a priori characterization of the solu- 
tion with minimal computation. Furthermore, the investigation has 
also illustrated the power of operator-theoretic methods over 
other numerical approaches to solve a vast class of problems of 
transport in fairly complicated domains. The only numerical work 
required in the solution of these problems is the solution of a 
non-linear algebraic equation (i.e. the characteristic equation) which 
can be easily accomplished by inexpensive computational routines. 
Furthermore, these calculations can be greatly guided by analy- 
zing the characteristic equation. The study reported in the paper 
is useful to guide the analysis and the design of devices on labora- 
toD- and other scales required for a variety of membrane separa- 
tions. Since the results of the study are highly analytical, they 
will also be of great importance to guide the design of experi- 
ments to obtain transport parameters in these applications. 

NOMENCLATURE 

a :cross sectional area 
al :thickness of the single isolated layer in Eq. (27) 
c, : solute concentration 
C, :dimensionless concentration of solute 
Dk :diffusion coefficient of species 
D(L) :domain of the differential operation L 
f :feed to external boundary region 
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F :volumetric flow rate into external boundary regions 
H :direct-sum Hilbert space 
k :layer of the composite membrane 
L :total length of composite membrane 
I~ :differential operation defined in Eq. (17) 
Pe : Peclet number 
Pe, :Peclet number in composite gel 
Pe, :Peclet number in buffer solution 
q~ :functions defined after Eq. (17) 
q~ :functions defined after Eq. (18) 
s, :dimensionless term (x'fL) in membrane layer 
t : time variable 
u : convective velocity 
w :element of the Hilbert space H 
x :dimensional spacial coordinate 
x, :length of membrane 

G r e e k  L e t t e r s  

r : diffusivity ratio 
13 :porosity of the membrane 
13,a :effective distribution coefficient of solute 
r :monotonic function of % 
fl  :transcendental function of ~. 
"q :fundamental solutions to differential equation 
t '  :dimensionless time in three layer problem 
0 : non-dimensional parameter 
~k : eigenvalue 
K :normalization factor of the eigenvector 

f :feed to external boundary region 
o : first layer of the composite media 
<,> : composite inner product 
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